
16.6
Parametric Surfaces and 

Their Areas 



2

Parametric Surfaces
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Parametric Surfaces

Similarly to describing a space curve by a vector function r(t) of 

a single parameter t, a surface can be expressed by a vector 

function r(u, v) of two parameters u and v.

Suppose r(u, v) = x(u, v)i + y(u, v)j + z(u, v)k is a vector-valued 

function defined on a region D in the uv-plane.

So x, y, and, z, the component functions of r, are functions of 

the two variables u and v with domain D. 

The set of all points (x, y, z) in R3 s.t. x = x(u, v), y = y(u, v),          

z = z(u, v) and (u, v) varies throughout D, is called a parametric 

surface S.

Typical surfaces: Cylinders, spheres, quadric surfaces, etc.
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Example 3 – Important From Book

The vector equation of a plane through (x0, y0, z0) and 

containing vectors

is

rather
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Example – Point on Surface?

Does the point (2, 3, 3) lie on the given surface?

How about (1, 2, 1)?
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Example – Identify the Surface

Identify the surface with the given vector equation.
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Example – Identify the Surface

Identify the surface with the given vector equation.
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Example – Find a Parametric Equation

The part of the hyperboloid –x2 – y2 + z = 1 that lies below the 

rectangle [–1, 1] X [–3, 3].
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Example – Find a Parametric Equation

The part of the cylinder x2 + z2 = 1 that lies between the planes 

y = 1 and y = 3.
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Example – Find a Parametric Equation

Part of the plane z = 5 that lies inside the cylinder x2 + y2 = 16.
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Surfaces of Revolution
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Surfaces of Revolution (Book)

Surfaces of revolution can be represented parametrically

which allows you to graph using a computer program. For 

instance, let’s consider the surface S obtained by rotating the 

curve y = f(x), a  x  b, about the x-axis, where f(x)  0. 

Let  be the 

angle of rotation 

as shown.
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Surfaces of Revolution (Book)

If (x, y, z) is a point on S, then

x = x         y = f(x) cos  z = f(x) sin 

Therefore we take x and  as parameters and regard 

Equations 3 as parametric equations of S. 

The parameter domain is given by a  x  b, 0    2 . 
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Tangent Planes
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Tangent Planes

Let r(u, v) = x(u, v) i + y(u, v) j + z(u, v) k be a parametric surface.  

We will derive the equation of the tangent plane at a point P0

with position vector r(u0, v0).

First, hold u constant, then we obtain the tangent vector to C1

at P0 by taking the partial derivative rv(u0, v):
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Tangent Planes
Similarly, hold v constant, then we obtain tangent vector to C2

at P0 by taking the partial derivative ru(u, v0):

If ru  rv is not 0, then surface S is called smooth (no “corners”).

For a smooth surface, the tangent plane is a plane that contains 

the tangent vectors ru and rv, and the vector ru  rv is a normal 

vector to the tangent plane.

Recall:  The normal vector leads to the plane:a,  b,  c
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Example – Finding Tangent Plane

Find an equation of the tangent plane to the given parametric 

surface at the specified point. 
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Example – Finding Tangent Plane

Find an equation of the tangent plane to the given parametric 

surface at the specified point. 
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Surface Area
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Surface Area (Book)

For simplicity we start by considering a surface whose 

parameter domain D is a rectangle, and we divide it into 

subrectangles Rij.

The part of Sij the surface that corresponds to Rij is called a 

patch and has the point Pij with position vector                as one 

of its corners.
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Surface Area
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Surface Area
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Surface Area
The area of this parallelogram is

and so an approximation to the area of S is

Definition: If a smooth parametric surface S is given by the 

equation r(u, v) = x(u, v)i + y(u, v)j + z(u, v)k and S is covered 

just once as (u, v) ranges throughout the parameter of D, then 

the surface area of S is
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Example – Finding Surface Area

Find the area of the helicoid (or spiral ramp) with vector equation 

r(u, v) = u cos v i + u sin v j + v k for 0  u  1 and 0  v  .
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Example – Finding Surface Area

Set up, but do not evaluate, an integral for the area of the 

ellipsoid x2/a2 + y2/b2 + z2/c2 = 1.  

Let’s try with spherical coordinates.
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Surface Area of the Graph of a function
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Surface Area of the Graph of a Function

For the special case of a surface S with z = f(x, y), where (x, y) 

lies in D and f has continuous partial derivatives, we can take 

x and y as parameters. 

Specifically, the parametric equations are

x = x            y = y           z = f(x, y)

giving us

w/ cross product
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Surface Area of the Graph of a Function

Leading to

and the previous surface area formula becomes



29

Example – Finding Surface Area

Find the area of the part of the surface z = x + y2 that lies above 

the triangle with vertices (0, 0), (1, 1), and (0, 1).
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Example – Finding Surface Area

Set up, but do not evaluate, an integral for the area of the 

surface with given vector equation (similar to the helicoid 

example from previous slide) for 0  u  h and 0  v  2 by first 

eliminating the parameter.

r(u, v) = u cos v i + u sin v j + cu k


