

Parametric Surfaces

Parametric Surfaces

Similarly to describing a space curve by a vector function r(t) of a single parameter t, a surface can be expressed by a vector function r(u, v) of two parameters u and v.

Suppose $\mathbf{r}(u, v) = x(u, v)\mathbf{i} + y(u, v)\mathbf{j} + z(u, v)\mathbf{k}$ is a vector-valued function defined on a region *D* in the *uv*-plane.

So *x*, *y*, and, *z*, the **component functions of r**, are **functions** of the **two variables** *u* and *v* with domain *D*.

The set of all points (x, y, z) in \mathbb{R}^3 s.t. x = x(u, v), y = y(u, v), z = z(u, v) and (u, v) varies throughout *D*, is called a parametric surface *S*.

Typical surfaces: Cylinders, spheres, quadric surfaces, etc.

Example 3 – Important From Book

The vector equation of a plane through (x_0, y_0, z_0) and containing vectors

$$\vec{a} = \langle a_1, a_2, a_3 \rangle$$
 $\vec{b} = \langle b_1, b_2, b_3 \rangle$

is

$$\vec{r}(u,v) = \langle x_0, y_0, z_0 \rangle + \langle a_1, a_2, a_3 \rangle u + \langle b_1, b_2, b_3 \rangle v$$

rather

$$\vec{r}(u,v) = \langle x_0 + a_1 u + b_1 v, y_0 + a_2 u + b_2 v, z_0 + a_3 u + b_3 v \rangle$$

Example – Point on Surface?

Does the point (2, 3, 3) lie on the given surface?

$$\vec{r}(u,v) = \left\langle 1+u-v, \ u+v^2, \ u^2-v^2 \right\rangle$$

How about (1, 2, 1)?

Example – Identify the Surface

Identify the surface with the given vector equation.

$$\vec{r}(u,v) = \left\langle u^2, \ u\cos v, \ u\sin v \right\rangle$$

Example – Identify the Surface

Identify the surface with the given vector equation.

$$\vec{r}(s,t) = \langle 3\cos t, s, \sin t \rangle$$
, $-1 \le s \le 1$

Example – Find a Parametric Equation

The part of the hyperboloid $-x^2 - y^2 + z = 1$ that lies below the rectangle [-1, 1] X [-3, 3].

Example – Find a Parametric Equation

The part of the cylinder $x^2 + z^2 = 1$ that lies between the planes y = 1 and y = 3.

Example – Find a Parametric Equation

Part of the plane z = 5 that lies inside the cylinder $x^2 + y^2 = 16$.

Surfaces of Revolution

Surfaces of Revolution (Book)

Surfaces of revolution can be represented **parametrically** which allows you to graph using a computer program. For instance, let's consider the surface *S* obtained by rotating the curve y = f(x), $a \le x \le b$, about the *x*-axis, where $f(x) \ge 0$.

Let θ be the angle of rotation as shown.

Surfaces of Revolution (Book)

If (x, y, z) is a point on S, then

$$x = x$$
 $y = f(x) \cos \theta$ $z = f(x) \sin \theta$

Therefore we take x and θ as parameters and regard Equations 3 as parametric equations of S.

The parameter domain is given by $a \le x \le b$, $0 \le \theta \le 2\pi$.

Tangent Planes

Tangent Planes

Let $\mathbf{r}(u, v) = x(u, v) \mathbf{i} + y(u, v) \mathbf{j} + z(u, v) \mathbf{k}$ be a parametric surface. We will derive the equation of the **tangent plane** at a point P_0 with **position vector** $\mathbf{r}(u_0, v_0)$.

First, hold *u* constant, then we obtain the tangent vector to C_1 at P_0 by taking the partial derivative $\mathbf{r}_v(u_0, v)$:

$$\mathbf{r}_{v} = \frac{\partial x}{\partial v} (u_{0}, v_{0}) \mathbf{i} + \frac{\partial y}{\partial v} (u_{0}, v_{0}) \mathbf{j} + \frac{\partial z}{\partial v} (u_{0}, v_{0}) \mathbf{k}$$
15

Tangent Planes

Similarly, hold v constant, then we obtain tangent vector to C_2 at P_0 by taking the partial derivative $\mathbf{r}_u(u, v_0)$:

$$\mathbf{r}_{u} = \frac{\partial x}{\partial u} (u_{0}, v_{0}) \mathbf{i} + \frac{\partial y}{\partial u} (u_{0}, v_{0}) \mathbf{j} + \frac{\partial z}{\partial u} (u_{0}, v_{0}) \mathbf{k}$$

If $\mathbf{r}_u \times \mathbf{r}_v$ is not **0**, then surface S is called **smooth** (no "corners").

For a smooth surface, the **tangent plane** is a plane that contains the **tangent vectors** \mathbf{r}_u and \mathbf{r}_v , and the **vector** $\mathbf{r}_u \times \mathbf{r}_v$ is a **normal vector** to the tangent plane.

Recall: The normal vector $\langle a, b, c \rangle$ leads to the plane:

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$
 16

Example – Finding Tangent Plane

Find an equation of the tangent plane to the given parametric surface at the specified point.

$$x = u^2$$
, $y = u - v^2$, $z = v^2$; (1,0,1)

Example – Finding Tangent Plane

Find an equation of the tangent plane to the given parametric surface at the specified point.

$$\mathbf{r}(u, v) = (u + v)\mathbf{i} + u\cos v\mathbf{j} + v\sin u\mathbf{k}; \quad (1, 1, 0)$$

Surface Area (Book)

For simplicity we start by considering a surface whose parameter domain D is a rectangle, and we divide it into subrectangles R_{ii} .

The part of S_{ij} the surface that corresponds to R_{ii} is called a *patch* and has the point P_{ij} with position vector $\mathbf{r}(u_i^*, v_j^*)$ as one of its corners.

The area of this parallelogram is

$$|(\Delta u \mathbf{r}_{u}^{*}) \times (\Delta v \mathbf{r}_{v}^{*})| = |\mathbf{r}_{u}^{*} \times \mathbf{r}_{v}^{*}| \Delta u \Delta v$$

and so an approximation to the area of S is

$$\sum_{i=1}^{m}\sum_{j=1}^{n} |\mathbf{r}_{u}^{*} \times \mathbf{r}_{v}^{*}| \Delta u \Delta v$$

Definition: If a smooth parametric surface S is given by the equation $\mathbf{r}(u, v) = x(u, v)\mathbf{i} + y(u, v)\mathbf{j} + z(u, v)\mathbf{k}$ and S is covered just once as (u, v) ranges throughout the parameter of D, then the surface area of S is

$$A(S) = \iint_{D} |\mathbf{r}_{u} \times \mathbf{r}_{v}| dA$$

Example – Finding Surface Area

Find the area of the helicoid (or spiral ramp) with vector equation $\mathbf{r}(u, v) = u \cos v \mathbf{i} + u \sin v \mathbf{j} + v \mathbf{k}$ for $\mathbf{0} \le u \le \mathbf{1}$ and $\mathbf{0} \le v \le \pi$.

Example – Finding Surface Area

Set up, but do not evaluate, an integral for the area of the ellipsoid $x^2/a^2 + y^2/b^2 + z^2/c^2 = 1$.

Let's try with spherical coordinates.

Surface Area of the Graph of a function

Surface Area of the Graph of a Function

For the special case of a surface S with z = f(x, y), where (x, y) lies in D and f has continuous partial derivatives, we can take x and y as parameters.

Specifically, the parametric equations are

x = x y = y z = f(x, y)

giving us

$$\mathbf{r}_x = \mathbf{i} + \left(\frac{\partial f}{\partial x}\right) \mathbf{k}$$
 $\mathbf{r}_y = \mathbf{j} + \left(\frac{\partial f}{\partial y}\right) \mathbf{k}$

w/ cross product | i i k |

$$\mathbf{r}_{x} \times \mathbf{r}_{y} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 0 & \frac{\partial f}{\partial x} \\ 0 & 1 & \frac{\partial f}{\partial y} \end{vmatrix} = -\frac{\partial f}{\partial x} \mathbf{i} - \frac{\partial f}{\partial y} \mathbf{j} + \mathbf{k}$$

Surface Area of the Graph of a Function

Leading to

$$|\mathbf{r}_x \times \mathbf{r}_y| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2 + 1} = \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2}$$

and the previous surface area formula becomes

$$A(S) = \iint_{D} \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^{2} + \left(\frac{\partial z}{\partial y}\right)^{2}} dA$$

Example – Finding Surface Area

Find the area of the part of the surface $z = x + y^2$ that lies above the triangle with vertices (0, 0), (1, 1), and (0, 1).

Example – Finding Surface Area

Set up, but do not evaluate, an integral for the area of the surface with given vector equation (similar to the helicoid example from previous slide) for $0 \le u \le h$ and $0 \le v \le 2\pi$ by first eliminating the parameter.

 $\mathbf{r}(u, v) = u \cos v \mathbf{i} + u \sin v \mathbf{j} + c u \mathbf{k}$